Published 9 May 2022 on L.A. Daily Post

Incorporating magnetic ions into colloidal quantum dots enables them to convert light into a stream of free electrons. This effect could benefit numerous technologies, from solar photochemistry and night-vision goggles to advanced accelerators and free-electron lasers.

Victor Klimov, lead Los Alamos National Laboratory (LANL) researcher on this project, said, “What we have done is to use a process of so-called ‘spin-exchange,’ enabled by adding manganese to specially sized quantum dots, to rapidly push energy from the manganese ions to the quantum dot electron. This eventually allows the electron to reach a ‘free’ unbound state and break loose.”

The new process employs a combined energy of multiple manganese ions. Therefore, it can be driven by low-energy photons from the visible part of the optical spectrum.

This makes the process useful in solar photochemistry as a driver of reactions, such as carbon dioxide conversion, or generation of solar fuels.

In photoemission, an electron is ejected from a material upon interaction with light. A traditional mechanism of photoemission is a photoelectric effect, due to the transfer of a photon’s energy to a bound electron, which is promoted to a higher-energy unbound state outside the material. Commonly, though, the emitted electron flux is only a small fraction – thousandths of a percent or less – of the incident photon flux, which is inefficient.

Another limitation is the need for high-energy ultraviolet or even X-ray photons to overcome strong bonding of the electron to the material. Such photons, however, are difficult to generate. Furthermore, they are sparse in the solar spectrum which limits the utility of traditional photoemission in solar photochemistry. Thus, the addition of the manganese made a profound difference.

The work was published today in the journal Nature Photonics, by scientists from Los Alamos and the University of New Mexico (UNM). Paper: High-efficiency photoemission from magnetically doped quantum dots driven by multi-step, spin-exchange Auger ionization, Nature Photonics

Read more . . . .

LANL: Magnetic Impurities Turn Quantum Dots Into Emitters Of Free Electrons

Funding: These studies were supported by the Solar Photochemistry Program of the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.


We See The World From All Sides and Want YOU To Be Fully Informed
In fact, intentional disinformation is a disgraceful scourge in media today. So to assuage any possible errant incorrect information posted herein, we strongly encourage you to seek corroboration from other non-VT sources before forming an educated opinion.

About VT - Policies & Disclosures - Comment Policy
Due to the nature of uncensored content posted by VT's fully independent international writers, VT cannot guarantee absolute validity. All content is owned by the author exclusively. Expressed opinions are NOT necessarily the views of VT, other authors, affiliates, advertisers, sponsors, partners, or technicians. Some content may be satirical in nature. All images are the full responsibility of the article author and NOT VT.